Pediatric Pearls: Tips and Tricks for the General Practitioner
Blake J. Larson, PharmD
Clinical Pediatric Pharmacist

Disclosure Statement:

- Blake J. Larson, Pharm.D.
- Potential conflicts of interest: None
- Sponsorship: None
- Presentation of this slide indicates my agreement to abide by the non-commercialism guidelines provided on the CE Requirements

Why Pediatrics?
Learning Objectives

- Explain the differences in pharmacokinetics and pharmacodynamics in the pediatric population
- Discuss common disease states in pediatrics and related pharmacotherapy
- Identify the challenges that occur as patients transition from pediatric to adult medicine
Pre-test Questions

1. Hydrophilic drugs will have ______ distribution volumes and ______ plasma concentrations in neonates.
 a. Lower; lower
 b. Higher; lower
 c. Lower; higher
 d. Higher; higher

2. Updated perforated appendicitis guidelines in pediatrics recommend this dose of metronidazole (Flagyl):
 a. 10 mg/kg every 8 hours; max dose of 750 mg
 b. 30 mg/kg every 24 hours; max dose of 2000 mg
 c. 30 mg/kg every 24 hours; max dose of 1500 mg
 d. 15 mg/kg every 8 hours; max dose of 500 mg

3. Greater than _____ percent of children with chronic illnesses and special healthcare needs will survive past their 20th birthday.
 a. 60
 b. 70
 c. 80
 d. 90
Introduction to Pediatrics

- Not just “small adults”

- Pediatric population accounts for almost one-third of the US population

- >20 million ED visits occur among pediatric patients younger than 15, compared to 24 million visits among adults aged 45-75 in 2007

- AAP strongly recommends prescribers use pharmacist consultation, including the integration of clinical pharmacists in patient care rounds and activities that involve reviewing medication use procedures and orders.

Definitions

- Neonates = birth to 28 days (may extend this for VLBW neonates)
 - Low birth weight (LBW) = 1500 - 2500 g
 - Very low birth weight (VLBW) = 1000 - 1500 g
 - Extremely low birth weight (ELBW) = <1000 g

- Premature is defined as being born before 37 weeks of gestational age
 - The earliest age at which the infant has at least a 50% chance of survival is generally believed to be 24 weeks

- Infants = 28 days to 12 months

- Children = 1 year to 12 years of age

- Adolescents = 13-17 years of age

Vital signs

- Heart Rate
 - Birth to 3 months: 85 to 205 beats/min, decreases gradually to about 100 to 190 at age 2
 - Children: 80 to 140 beats/min
 - Children >10 years: closer to adults at 60 to 100 beats/min

- Respiratory Rate
 - 30 - 40/min in neonates and infants
 - 24 - 40/min in children up to 3 years of age
 - 22 - 34/min in children ages 3 to 5 years of age
 - 18 - 30/min in children ages 6 to 12 years of age
 - 12 - 16/min in children >12 years of age

- Blood Pressure
 - 60-84/31-53 for neonates
 - 80-98/46-56 for children ages 1 to 5 years of age
 - 91-106/53-63 for children ages 6 to 11 years of age
 - 99-122/79-97 for children ages 12 to 17 years of age
Introduction to Pediatrics

• Medication use in pediatrics
 - Off label use of medications occurs often
 - Up to 79% of inpatient prescriptions involve off label medication use in the United States
 - Use of primary literature is crucial in providing evidence based care to infants, children and adolescents
 - Increased risk of liability
 - Limited formulations
 - Children will reject medications on the basis of color, taste, texture, and temperature, rendering even the most potent of oral medications useless
 - Child Life Specialists
 - Orphan Drug Act
 - Rounding of doses
 - Monitor patient weights often!

Introduction to Pediatrics

• Neonates
 - Dosing recommendations may be given on the basis of weight as well as postnatal age or post-conceptional age
 - Will lose about 10% of their body weight in the first week of life
 - Use birth weight as dosing weight during this time
 - Temperatures are best measured rectally in neonates
 - Sustained temperatures over 38°C requires evaluation
 - There are no neonate specific reference ranges of lab values for commonly used tests such as blood chemistry, hematology, or liver function tests
 - SCr in the first 48 hours of life is not a reliable indicator of kidney function - reflects mother’s SCr
 - ELBW and VLBW neonates - very difficult to maintain normal electrolyte balance
 - Difficult to predict when renal function will become normal, if ever
 - Often more useful to follow trends in lab values rather than single values

Pediatric Pearl Topic #2

Pediatric Pharmacokinetics/Pharmacodynamics

Absorption

Metabolism

Distribution

Excretion
PK/PD

- **Gastric pH**
 - Neonates will have higher gastric pH
 - More relevant to chemical stability of the drug rather than ionization
 - Example: beta-lactams

![Image](image1.png)

Figure 1. Plasma concentration vs. time profiles for penicillin in neonates, infants, and children after oral administration of a single 11,000-unit/100 lb dose.

- **Gastric Emptying**
 - Increases dramatically during the first week of life
 - Extends rate at which medications are distributed along the primary absorptive site
 - Other factors can influence gastric emptying during the newborn period, including prematurity, GERD, respiratory disease, congenital heart disease, and caloric density of feeds
 - Frequency and amplitude of intestinal contractions are reduced in the newborn and young infant
 - Most children usually attain adult motility patterns by 6-8 months of life
 - Combined factor of gastric emptying and GI motility will increase the time to achieve maximal plasma concentrations in neonates, with further prolonged Tmax in premature neonates

PK/PD

- **Suppositories**
 - Suppositories that deliver their contents over hours will very likely be expelled before liberating the entire drug dose

- **Topicals**
 - Children have markedly larger surface area per unit of mass than adults
 - Greater degree of hydration to skin
 - Higher rates of perfusion
 - All of these contribute to enhanced drug permeability

- **Intramuscular**
 - Young infants have increased skeletal muscle capillary density compared to adults by about 50%, resulting in greater IM bioavailability
 - **IM volumes**
 - Newborns and small infants: 0.5 mL max volume
 - Small children: 1 mL max volume
 - School aged children and older: 2 mL max volume

![Image](image2.png)

Image 2. Example of suppository and topical preparations.
PK/PD

- Around 80% of a pre or full term neonate’s body weight is composed of water
- Gradually decreases throughout the first 4 months of life
- Even the fat in these younger patients consists of a higher proportion of water and a lower proportion of lipid compared to adults
- Hydrophilic drugs that restrict their distribution to body water show larger apparent distribution volumes and lower plasma concentrations in neonates and young infants
- Compared with infants, young children will have peak concentrations that are almost 33% greater and almost 50% greater in older children
- Neonates and young infants (<6 months) experience higher unbound fractions of drugs than do older children and adults
 - Reduction in circulating plasma proteins
 - Lower binding affinity for fetal albumin

PK/PD

- CYP3A4 levels increase steadily throughout infancy, maturing to adult levels by 1 year of age
 - Clearance of sildenafil rapidly increases within the first 10 days of life
- CYP2D6 achieves adult levels by 2 weeks of age
- Terminal half-life of phenytoin (CYP2C9) drops from avg of 20 hours at birth to 8 hours by 2 weeks of life
- Omeprazole (CYP2C19) shows higher rates of clearance in young infants and shorter half-lives during the first 5 years of life
- CYP1A2 enzymes are absent in fetal development at only 4-5% of adult levels in neonates. This increases to 55% of adult activity between 1-9 years of life
PK/PD

- Phase II Metabolism reactions
 - UGT1A1: Involved in metabolism of APAP, ibuprofen, and warfarin
 - Absent in fetal liver, followed by immediate acquisition shortly after birth, reaching adult levels between 3 and 6 months of life
 - UGT1A9: Involved in metabolism of APAP and ibuprofen
 - Reaches 44% of adult values by 6 months of life, increases to 64% at 2 years of age

- Although compensatory clearance pathways exist, the overall rate of clearance for drugs eliminated through the bile will be reduced in the newborn
 - 70% of ceftriaxone dose is recovered in the urine of neonate compared to 40% to 60% in children and adults
 - Ceftriaxone will displace bilirubin from albumin in the neonate and increase risk for kernicterus (contraindicated in premature neonates)
 - Reduced levels of alcohol dehydrogenase in neonates and infants
 - Avoid elixirs

- How do we measure renal function in children?
 - The Bedside Schwartz Equation!
 - eGFR = [0.413 x height (in cm)] / Scr (in mg/dL)
 - What about the original Schwartz equation?
 - Found to overestimate renal function by as much as 20-40%
 - Some institutions still use the original Schwartz equation
 - Do not use Cockcroft-Gault or Jeliffe in pediatrics
 - Can consider using for adolescents
 - Let’s test your math skills!
 - Calculate eGFR for a 2 year old patient
 - Ht: 89 cm
 - Scr: 0.3
PK/PD

Normal GFR in Children and Young Adults

<table>
<thead>
<tr>
<th>Age</th>
<th>Mean GFR +/- SD in mL/min/1.73m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 week</td>
<td>40.6 +/- 14.8</td>
</tr>
<tr>
<td>2-8 weeks</td>
<td>65.8 +/- 24.8</td>
</tr>
<tr>
<td>>8 weeks</td>
<td>95.7 +/- 21.7</td>
</tr>
<tr>
<td>2-12 years</td>
<td>113.0 +/- 27.0</td>
</tr>
<tr>
<td>13-21 years (males)</td>
<td>140.0 +/- 30.0</td>
</tr>
<tr>
<td>13-21 years (females)</td>
<td>118.0 +/- 22.0</td>
</tr>
</tbody>
</table>

PK/PD

• Glomerular function in neonates

Figure 9. Postnatal acquisition of functional renal filtration capacity as a function of gestational age.

PK/PD

• Example: Dosing of fluconazole in neonates

 • Half-life of fluconazole in a premature infant is 88 hours compared to full term counterpart at 20-25 hours

 • Prophylaxis for invasive candidiasis

 • GA <30 weeks
 - PNA <7 days: IV: 3-6 mg/kg/dose twice weekly
 - PNA >7-42 days: IV: 3-6 mg/kg/dose every 72 hours
 - PNA >42 days: IV: 6 mg/kg/dose every 48 hours

 • GA 30-40 weeks
 - 6 mg/kg/dose every 48 hours
Med Safety and Toxicology

• Adverse drug events occur more frequently in pediatric patients than in adults
 • In 2001, the incidence of medication errors in pediatric patients was reported as 5.7 per 100 medication orders
 • Most (79%) of potential ADEs occurred at the stage of ordering, most of them dosing errors
 • IV anti-infectives, fluids and electrolytes, analgesics and sedatives
 • Limited buffering capacity in children
 • Caregivers may be asked to crush tablets, dilute them in water, and give an aliquot of this preparation
 • Always recommended doses be express in both milligrams and milliliters

Med Safety and Toxicology

• Culture of Safety
 • Transparency
 • Training and Education
 • Pediatrics should be a required therapeutics course in the curriculum of pharmacy schools
 • Some students are never exposed before graduation to the unique challenges and differences of pediatric pharmacology - leads to fear of treating children
 • Residency training
 • Medication reconciliation
 • Training modules
• Formulary management
• Technology
 • Computerized prescriber order entry (CPOE)
 • EMRs
 • Pharmacy systems
 • ADTs
 • Smart pumps
 • Barcode scanning
Med Safety and Toxicology

• Communication is key!

 • Studies have shown that without intervention, only 50% of caregivers give an accurate dose of liquid medicines to the children in their care
 • This can be increased to 95% using a 1-3 minute intervention
 • Can also improve adherence from 62% to 91%

 • Children can generally begin providing and receiving information during health care visits at age 3, with greater involvement starting at age 7

 • Consider factors that affect caregiver medication administration hesitance
 • Cultural beliefs, socioeconomic status, psychosocial differences among age groups (child vs. adolescent), multiple caregivers, drug formulations

 • Speaking to children vs. speaking to parents/caregivers

Med Safety and Toxicology

• Medication adherence

 • In general, younger children under 5 years of age have great medication adherence with treatment of chronic illnesses

 • Confusion between caregivers of who has given a medication can occur
 • Can result in under or overdosing

 • Assuming patients over 6 years of age can swallow pills

 • Palatability
 • Clindamycin, oral steroids

 • Inappropriate measurements
 • Using kitchen spoons for measuring doses

 • Discussions of medication adherence need to start while they are young!

Med Safety and Toxicology

• Childhood poisonings remain a common occurrence

 • Medication adherence

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Exposures/100k population</th>
<th>Number of Exposures</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>2813</td>
<td>112,159</td>
</tr>
<tr>
<td>1</td>
<td>8294</td>
<td>331,962</td>
</tr>
<tr>
<td>2</td>
<td>8245</td>
<td>332,730</td>
</tr>
<tr>
<td>3</td>
<td>3711</td>
<td>149,840</td>
</tr>
<tr>
<td>4</td>
<td>1863</td>
<td>75,254</td>
</tr>
<tr>
<td>5</td>
<td>1090</td>
<td>45,469</td>
</tr>
<tr>
<td>Child 6-12</td>
<td>464</td>
<td>135,145</td>
</tr>
<tr>
<td>Teen 13-19</td>
<td>511</td>
<td>153,137</td>
</tr>
</tbody>
</table>

A report from the American Association of Poison Control Centers Toxic Exposure Surveillance System.
Med Safety and Toxicology

- Toxicology - Common exposures
 - Iron: Antidote = deferoxamine
 - Salicylates: Antidote = sodium bicarbonate
 - Acetaminophen: Antidote = N-acetylcysteine (NAC)
 - Antihistamines: Use BZDs for seizures or delirium, NaBicarb for arrhythmias
 - Beta blockers/CCBs: Pressor support, glucagon, insulin
 - Opioids: naloxone, pressor support, seizure management
 - Sulfonylureas: IV dextrose, glucagon
 - Foreign body ingestion: button/disk batteries biggest concern

Med Safety and Toxicology

- Liquid tobacco (E-cigs)
 - Concentrate of nicotine as high as 36 mg/mL
 - Regular cigarette contains 13-30 mg nicotine
 - An estimated 40-60 mg of nicotine may be lethal in a child
 - Mild/moderate toxicity: GI upset, N/V, dizziness, HA, tachycardia
 - Severe toxicity: Seizures, confusion, bradycardia, hypotension, high doses can cause fatal respiratory depression
 - Treatment is primarily supportive and symptomatic
 - Vomiting is common: treat with ondansetron and IV fluids
 - BZDs for seizures or severe agitation
 - Atropine for bradycardia
 - Pressors for hypotension

Pediatric Pearl Topic #4

Pediatric Advanced Life Support (PALS)
PALS

- Vital signs
 - Heart Rate
 - Birth to 3 months: 85 to 205 beats/min, decreases gradually to about 100 to 190 at age 2
 - Children: 80 to 140 beats/min
 - Children >10 years: closer to adults at 60 to 100 beats/min
 - Respiratory Rate
 - 30 - 60/min in neonates and infants
 - 24 - 40/min in children up to 3 years of age
 - 22 - 34/min in children ages 3 to 5 years of age
 - 18 - 30/min in children ages 6 to 12 years of age
 - 12 - 16/min in children >12 years of age
 - Blood Pressure
 - 60-84/31-53 for neonates (Hypotension = SBP<60)
 - 80-98/34-56 for children ages 1 to 5 years of age (Hypotension = SBP<70)
 - 91-106/53-63 for children ages 6 to 11 years of age (Hypotension = SBP<70 + (age in years x 2))
 - 99-122/59-70 for children ages 12 to 17 years of age (Hypotension = SBP<90)

Overall, children have an incredible ability to heal
- Usually young, healthy bodies and organ function
- Most common life-threatening emergencies:
 - Respiratory failure (often ID related)
 - Seizures
 - Anaphylaxis
 - Supraventricular tachycardia (SVT)
 - Bradycardia
 - Cardiac arrest

PALS

Respiratory/Anaphylaxis Medications

<table>
<thead>
<tr>
<th>Medication (Neutralized)</th>
<th>5–10 kg</th>
<th>10–20 kg</th>
<th>Greater than 20 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenaline (0.9% w/v)</td>
<td>0.5 mL</td>
<td>0.5 mL</td>
<td>0.5 – 1 mL</td>
</tr>
<tr>
<td>Diazepam (0.1 mg/mL)</td>
<td>Report dose p.r.n.</td>
<td>Report dose p.r.n.</td>
<td>Report dose p.r.n.</td>
</tr>
<tr>
<td>Diphenhydramine (HCl)</td>
<td>NA</td>
<td>1 mL</td>
<td>3 mL</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>0.25 mg</td>
<td>0.5 mg</td>
<td>0.5 mg</td>
</tr>
<tr>
<td>Ketamine (10 mg/mL)</td>
<td>0.5 mL</td>
<td>0.5 mL</td>
<td>0.5 mL</td>
</tr>
<tr>
<td>Epinephrine 1 mg/mL</td>
<td>2.5 mL</td>
<td>5 mL</td>
<td>5 mL</td>
</tr>
<tr>
<td>Periostab use</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PALS

Respiratory/Anaphylaxis Medications

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dose (mg/kg)</th>
<th>Route</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epinephrine</td>
<td>1.2-2.4</td>
<td>IV</td>
<td>0.015</td>
<td>0.03</td>
</tr>
<tr>
<td>Magnesium Sulfate</td>
<td>25-50</td>
<td>IV</td>
<td>0.075</td>
<td>0.25</td>
</tr>
<tr>
<td>Sodium Bicarbonate</td>
<td>1-2</td>
<td>IV</td>
<td>0.3-0.5</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Cardiovascular Resuscitation

- Fluids
 - Fluid bolus
 - 20 mL/kg of NS or LR, may give an additional 20-40 mL/kg depending on response and/or severity
 - 10 mL/kg for patients with cardiogenic shock
- Daily fluid requirements
 - Holliday-Segar method

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>Hourly Fluid Requirements</th>
<th>Daily Fluid Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>4 mL/kg</td>
<td>100 mL/kg</td>
</tr>
<tr>
<td>10-20</td>
<td>40 mL+2 mL/kg</td>
<td>1000 mL+50 mL/kg</td>
</tr>
<tr>
<td>>20</td>
<td>60 mL+1 mL/kg</td>
<td>1500 mL+25 mL/kg</td>
</tr>
</tbody>
</table>

Let's test your math skills! Calculate hourly fluid requirement for a 4 year old weighing 15 kg.
Pediatric Pearl Topic #5

Pain and Sedation

• Often referred to as “the fifth vital sign”
• A couple decades ago, a common misconception was that neonates could not feel pain, and if they did, they would not remember the experience
 - Elements of peripheral and central nervous system necessary for pain transmission and perception developed by end of first trimester
 - Structures necessary for pain modulation through descending pain pathway complete by 30-32 weeks gestation
• Lower pain threshold and hypersensitivity in premature neonates
• Studies have shown that children have suboptimal pain treatment compared to adults
• Untreated pain is associated with significant behavioral and biochemical consequences
 - Delayed healing, complicated recovery time, significant stress for patient and family

Pain and Sedation

• Indicators for pain
 - Increased respiratory rate, increased heart rate, oxygen desat, grimacing, high-pitched crying
 - Neonatal Infant Pain Scale (NIPS) and the Face, Legs, Activity, Cry, Consolability (FLACC) scale use these indicators up to age 4
 - Wong-Baker FACES scale used in children older than 4 years
 - Numeric pain scale may be used in patients 10 years and older

Wong-Baker FACES™ Pain Rating Scale

0 - No Hurt
2 - Hurts a Little Bit
4 - Hurts a Little More
6 - Hurts Even More
8 - Hurts Worse Lot
10 - Hurts Most

4/24/17
Pain and Sedation

- Non-pharm
 - Child Life Specialists - distract with play, bubbles, video games, movies, breathing exercises
 - Music Therapy
 - Neonates
 - Swaddling, rocking, pacifier use
 - Reduced lighting
 - Decrease amount of times/day the infant is touched
 - Decrease the volume of the unit in general (alarms, paging system, etc)

- Non-opioid analgesics
 - Acetaminophen
 - PO: 15 mg/kg/dose every 4-6 hours; max dose 650 mg; NTE 75 mg/kg/day
 - Rectal: 20 mg/kg/dose; contraindicated in immunocompromised children
 - IV: 10-15 mg/kg/dose (use 10 mg/kg in infants - higher AUC than older children)
 - Ibuprofen
 - PO: 10 mg/kg/dose every 6-8 hours; NTE 40 mg/kg/day
 - IV: 10-15 mg/kg/dose every 6-8 hours; NTE 2.4 g/day
 - Naproxen
 - PO: 10 mg/kg/dose every 6-8 hours; NTE 40 mg/kg/day
 - IV: 250-500 mg every 12 hours; max 1000 mg/day
 - Ketorolac
 - IM: 1 mg/kg/dose; max 30 mg
 - IV: 0.5-1 mg/kg/dose every 6 hours, max 30 mg; NTE 5 days
 - Naproxen
 - PO: 5-7 mg/kg/dose every 8-12 hours
 - IV: 0.05-0.1 mg/kg every 2-4 hours; keep initial dose lower than 2 mg

- Opioids
 - Morphine
 - IV, elixirs, tablets, SR products
 - Continuous infusion in neonates may be less efficacious
 - Reduced ability to metabolize morphine to active metabolite morphine-6-glucuronide
 - Concern for hypotension
 - IV: 0.05-0.1 mg/kg every 2-4 hours; keep initial dose lower than 2 mg
 - Fentanyl
 - IV, elixirs, tablets, SR products
 - Continuous infusion in neonates may be less efficacious
 - Reduced ability to metabolize morphine to active metabolite morphine-6-glucuronide
 - Concern for hypotension
 - IV: 0.05-0.1 mg/kg every 2-4 hours; keep initial dose lower than 2 mg

- Management
 - Monitor vital signs, pain scores, sedation level
 - Adjust as needed

- Ceiling effect - limited use in patients with moderate-severe pain
Pain and Sedation

- **Opioids**
 - **Hydromorphone**
 - Preferred in patients with renal failure because of its decreased amount of metabolites
 - IV: 0.01 mg/kg every 3-6 hours for infants <6 months
 - 0.015 mg/kg for older children; max dose 0.5-0.6 mg/dose initially
 - **Methadone**
 - Often used in neonates for neonatal abstinence syndrome or in patients who have had long-term use of opioids - wean them off using oral methadone
 - Typically will add oral clonidine as part of weaning procedure
 - Clonidine and dexmedetomidine work by augmenting the descending pain pathway
 - About 35-52% of critically ill infants and children develop withdrawal because of receiving long term opioids in the ICU
- **Oral Hydrocodone and Oxycodone products**
 - Hydrocodone: 0.1 mg/kg/dose every 4 to 6 hours for children <6 months
 - Oxycodone/APAP: 0.1 mg/kg/dose every 4 to 6 hours for children >2 years
 - **Methadone**
 - Often used in neonates for neonatal abstinence syndrome or in patients who have had long-term use of opioids - wean them off using oral methadone
 - Typically will add oral clonidine as part of weaning procedure
 - Clonidine and dexmedetomidine work by augmenting the descending pain pathway
 - About 35-52% of critically ill infants and children develop withdrawal because of receiving long term opioids in the ICU
- **Ketamine**
 - Often used for procedural sedation in children or RSI
 - IV: 1-2 mg/kg/dose; may repeat with additional doses of 0.5-1 mg/kg every 5 to 15 minutes as needed
 - Be sure to counsel family on dissociate effect
- **Propofol**
 - Procedural sedation
 - IV: 1-2 mg/kg/dose; may repeat with additional doses of 0.5 mg/kg every 3-5 minutes as needed
 - “Ketofol”: 0.5 mg/kg of ketamine and 0.5 mg/kg of propofol
- **Intranasal medications in children**
 - Ketamine: 3-6 mg/kg/dose split between each nostril
 - Midazolam: 0.2-0.4 mg/kg/dose split between each nostril
 - Fentanyl: 1.5 mg/kg/dose split between each nostril
 - Dexmedetomidine: 2-3 mcg/kg/dose split between each nostril

Rapid Sequence Intubation

<table>
<thead>
<tr>
<th>Induction Medications</th>
<th></th>
<th>Induction Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diazepam</td>
<td>0.1-0.3 mg/kg IV/IO</td>
<td>Diazepam</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>1-3 mcg/kg IV/IO BM</td>
<td>Fentanyl</td>
</tr>
<tr>
<td>Ketamine</td>
<td>1-2 mg/kg IV/IO 4-5 mcg/kg/d</td>
<td>Ketamine</td>
</tr>
<tr>
<td>Midazolam</td>
<td>0.1-0.3 mg/kg IV/IO 1-2 mcg/kg/d</td>
<td>Midazolam</td>
</tr>
<tr>
<td>Propofol</td>
<td>1-2 mg/kg IV/IO</td>
<td>Propofol</td>
</tr>
<tr>
<td>Neuromuscular Blockade Medications</td>
<td></td>
<td>Neuromuscular Blockade Medications</td>
</tr>
<tr>
<td>Succinylcholine & vecuronium</td>
<td>1-3 mg/kg IV/IO BM</td>
<td>Succinylcholine & vecuronium</td>
</tr>
<tr>
<td>Rocuronium</td>
<td>1 mg/kg IV/IO</td>
<td>Rocuronium</td>
</tr>
</tbody>
</table>

Use with caution in asthmatics, IC, neurologic disease, hypotension, renal failure, preeclampsia, diabetes, crush injury victims.
Pediatric Pearl Topic #6

Seizures

• Most common neurologic disorder of childhood
 • Occur in about 4% to 10% of children
 • Common in children with cerebral palsy or developmental delay, metabolic disorders, tumors, head trauma, drug ingestion, CNS infections

• At least 20% of epilepsies linked to genetic component
 • Even febrile seizures have a genetic component, with 25-40% of patients with family history

• Aura may precede a seizure in some children

• After a seizure, period of fatigue, confusion, or irritability occurs, known as the postictal period

Seizures

• Neonatal seizures occur in 1.8 to 3.5 of every 1000 newborns
 • Generally cause little to no brain injury
 • S/sx: eye deviations, lip smacking, apneic episodes
 • Benign familial neonatal seizure: presents within the first 3 months of life and resolves spontaneously by age 6 months
 • “Fifth-day fits”: benign idiopathic neonatal convulsions that appear at day 5 of life and end by day 15 of life
 • IV phenobarbital and phenytoin first line agents
 • Benzodiazepines may be used to immediate control of status epilepticus

• Some epileptic syndromes (Lennox-Gastaut) require several anticonvulsants
 • May still experience seizures
Seizures

- Ketogenic Diet
 - Popular therapy for patients with refractory seizures
 - Typically used in patient with symptomatic generalized epilepsy
 - Low protein and carbohydrate intake with high fat meals, thus inducing ketosis
 - Shown to reduce seizure frequencies by 50-70% in some studies
 - Specific mechanism is unknown
 - Requires strict control and adherence
 - Hospitalized during initiation of diet
 - Should not be initiated on valproic acid - risk of hepatotoxicity
 - Great opportunity for intervention by pharmacists
 - Dextrose should not be administered IV or in oral formulations
 - Requires thorough review of patient medication list and education to caretakers

- First generation anticonvulsants: carbamazepine, phenobarbital, phenytoin, valproic acid
 - Complex pharmacokinetics, require monitoring, drug interactions

- Second generation anticonvulsants: felbamate, gabapentin, lamotrigine, topiramate, oxcarbazepine, levetiracetam, zonisamide
 - More favorable drug profile, do not require monitoring

- Newer drugs: pregabalin, lacosamide, clobazam

- Tapering off medications should be done slowly, one medication at a time

Seizures

- Status Epilepticus

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Administration</th>
<th>Maximum dose</th>
<th>Maximum plasma level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diazepam</td>
<td>>1 mg</td>
<td>IV or PO</td>
<td>0.5 mg/kg</td>
<td>5 mg/l</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>20 mg</td>
<td>IV</td>
<td>10 mg/kg</td>
<td>6 mg/l</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>0.05-0.1 mg/kg</td>
<td>IV</td>
<td>0.05-0.1 mg/kg</td>
<td>0.05-0.1 mg/l</td>
</tr>
<tr>
<td>Melatonin</td>
<td>0.1 mg/kg</td>
<td>IV</td>
<td>0.1 mg/kg</td>
<td>10 mg/l</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>20 mg/kg</td>
<td>IV</td>
<td>20 mg/kg</td>
<td>10 mg/l</td>
</tr>
<tr>
<td>Valproic acid</td>
<td>20-40 mg/kg</td>
<td>IV</td>
<td>60 mg/kg</td>
<td>40 mg/l</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>50-100 mg/kg</td>
<td>IV</td>
<td>300 mg/kg</td>
<td>200 mg/l</td>
</tr>
</tbody>
</table>
Infectious Diseases

• Appendicitis and Antibiotic Use
 • Appendicitis is the most common condition in children requiring emergency abdominal surgery
 • Diagnosed in 1% to 8% of children evaluated for abdominal pain
 • Older children and adolescents develop appendicitis more often than younger children
 • Younger children can be difficult to diagnose as the presentation may be nonspecific
 • S/sx: Anorexia, periumbilical pain (early), migration of pain to right lower quadrant (w/in 24 hours), vomiting, fever (24-48 hours after onset of symptoms)
 • Early appendicitis (non-perforated) treat with x1 dose of prophylactic ceftriaxone and metronidazole
 • Advanced appendicitis (perforated):
 • IV Ceftriaxone: 50 mg/kg every 24 hours; max dose 2000 mg
 • IV Metronidazole: 30 mg/kg every 24 hours; max dose 1500 mg
 • Continue therapy until afebrile, well controlled on oral analgesics, tolerating a regular diet, and WBC within normal limits
Infectious Diseases

• Neonatal Sepsis
 • Early onset sepsis (EOS): within first 7 days of life
 • Pathogens acquired perinatally from mother (group B strep, E coli)
 • S/sx are nonspecific: fever, hypotension, oxygen desats, apnea, increased respiratory rate, poor weight gain
 • Confirmed EOS is rare, occurring in 0.1% of neonates, however the use of empiric antibiotics for presumed EOS is high because:
 - Imprecision and unreliability of sepsis diagnostic tools
 - Overlapping symptomatology of sepsis and other common neonatal diseases
 - Fast onset of clinical deterioration and higher rate of mortality in neonates who develop sepsis compared to those who do not
 • Recommended all neonates with s/sx of sepsis undergo a diagnostic lumbar puncture
 • Treatment: Ampicillin and Gentamicin
 - Dosing dependent on postnatal age and weight
 - Treat x 7-10 days for presumed sepsis; longer if culture positive
 - Some centers substitute cefotaxime as empiric EOS therapy
 - Controversial

• Neonatal late onset sepsis (LOS)
 • Presents after the first 7 days of life
 • Pathogens also acquired from mother, but may also include postnatal exposure to other caregivers and from other nosocomial sources, including health care workers
 • Empiric therapy still ampicillin and gentamicin for neonates admitted from the community
 • Replace ampicillin with vancomycin if hospitalized since birth
 • Treat for 7-10 days

Example: Gentamicin dosing in neonates

<table>
<thead>
<tr>
<th>Age-directed dosing (Bradley, 2014) IV, IV</th>
<th>Weight-directed dosing (AAP, 2015) IV, IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age >30 weeks:</td>
<td>Body weight < 1 kg</td>
</tr>
<tr>
<td>PWMA ≤ 24 days: 5 mg/kg/dose every 48 hours</td>
<td>PWMA ≤ 24 days: 5 mg/kg/dose every 48 hours</td>
</tr>
<tr>
<td>PWMA ≥ 25 days: 5 mg/kg/dose every 36 hours</td>
<td>PWMA ≥ 25 days: 5 mg/kg/dose every 36 hours</td>
</tr>
<tr>
<td>Gestational age 28 to 34 weeks:</td>
<td>Body weight 1 to 2 kg</td>
</tr>
<tr>
<td>PWMA ≤ 10 days: 4.5 mg/kg/dose every 24 hours</td>
<td>PWMA ≤ 10 days: 4.5 mg/kg/dose every 24 hours</td>
</tr>
<tr>
<td>PWMA ≥ 11 days: 5 mg/kg/dose every 36 hours</td>
<td>PWMA ≥ 11 days: 5 mg/kg/dose every 36 hours</td>
</tr>
<tr>
<td>Gestational age >35 weeks:</td>
<td>Body weight > 2 kg</td>
</tr>
<tr>
<td>PWMA ≤ 17 days: 4 mg/kg/dose every 24 hours</td>
<td>PWMA ≤ 17 days: 4 mg/kg/dose every 24 hours</td>
</tr>
<tr>
<td>PWMA ≥ 18 days: 5 mg/kg/dose every 24 hours</td>
<td>PWMA ≥ 18 days: 5 mg/kg/dose every 24 hours</td>
</tr>
</tbody>
</table>
Infectious Diseases

- Acute Otitis Media (AOM)
 - Most common diagnosis leading to antibiotic prescription in children
 - At least 90% of children will have at least one episode by 2-3 years of age
 - Most common pathogens include S. pneumoniae, H. influenzae, and M. catarrhalis
 - S/sx: fever, rhinorrhea, irritability, otalgia, tugging or rubbing the ear, middle ear effusion and inflammation
 - Mild cases of AOM are self-limiting
 - Initial observation allows delay in antibiotic therapy for up to 48-72 hours
 - Warranted in children 2 years and older with uncertain diagnosis and those 6 months to 2 years with uncertain diagnosis and non-severe infection
 - Resolve spontaneously in most children without the need for antibiotic therapy

- Acute Otitis Media (AOM)
 - Antibiotic therapy initiated in children with severe disease (bulging tympanic membrane, severe otalgia, temp of 39 C or greater)
 - Also initiated in children under 6 months of age
 - High dose amoxicillin first-line therapy (response rate >80%)
 - 80-90 mg/kg/day divided every 12 hours; max single dose 2000 mg
 - Amoxicillin/clavulanate or cefdinir can be considered if patient does not respond to high dose amoxicillin
 - Other candidates include children with antibiotic exposure within 30 days and children in whom H. influenzae or M. catarrhalis is suspected
 - Amoxicillin/clavulanate: 90 mg/kg/day amoxicillin divided every 12 hours; max single dose 270 mg. Use only the 600 mg/5 mL suspension
 - 600 mg/5 mL suspension has lower dose of clavulanate compared to the 250 mg/5 mL, and 400 mg/5 mL suspension
 - Cefdinir: 14 mg/kg/day in 1 to 2 divided doses
 - Duration of therapy
 - 10 days for children younger than 2 years or with severe disease
 - 5-7 days for children with mild-moderate disease (usually 6 years or older)

Pediatric Pearl Topic #8

Transitioning from Pediatric to Adult Medicine
Peds to Adults

Simpler Transition vs. More Complex Transition
- Single health condition vs. Multiple health conditions
- Low risk of future health problems vs. High risk of future health problems
- No dependence on medical equipment vs. Reliance on life-sustaining medical equipment
- Rare acute illness, medically stable vs. Frequent acute episodes, medically unstable
- Few medications vs. Multiple medications, medication problems
- No cognitive impairments vs. Profound mental retardation
- No physical impairments vs. Severe physical impairments
- Mentally healthy vs. Mentally ill
- No behavioral concerns vs. Serious behavioral concerns

Peds to Adults

- Children and youth with special health care needs (CYSHCN)
 - Asthma
 - ADHD
 - Diabetes mellitus
 - Sickle cell disease
 - Cerebral Palsy
 - Cystic fibrosis
 - Chronic kidney disease
 - Inflammatory bowel disease
 - Congenital heart disease
 - Childhood cancer survivors
 - Solid-organ transplant recipients
 - Spina bifida
 - Down syndrome
 - HIV/AIDS
 - Genetic and neuromuscular disorders

Peds to Adults

- Why is transition so important?
 - Failure to recognize and plan transition may result in patients dropping out of care
 - Poor transition processes are recognized to have significant effect on morbidity and mortality in young adults with chronic health needs
 - About 11.2 million children (15% of all children in the US) ages 0-17 years have special health care needs
 - About 500,000 of them turn 18 and enter adulthood in the US yearly
 - Survival rates have increased for children with chronic illnesses
 - >90% of CYSHCN will survive beyond their 20th birthday
Peds to Adults

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Survival Info.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Childhood Cancers</td>
<td>• 46% of survivors are 20-40 y.o.</td>
</tr>
<tr>
<td></td>
<td>• 18% of survivors are > 40 y.o.</td>
</tr>
<tr>
<td>Cystic Fibrosis</td>
<td>• Median survival 37 y.o.</td>
</tr>
<tr>
<td></td>
<td>• 50% are > 18 y.o.</td>
</tr>
<tr>
<td>Congenital Heart Disease</td>
<td>• 85% reach adulthood</td>
</tr>
<tr>
<td></td>
<td>• Over 1,000,000 living with CHD</td>
</tr>
<tr>
<td>Down Syndrome</td>
<td>55-year life expectancy</td>
</tr>
<tr>
<td>Hemophilia</td>
<td>60-year life expectancy</td>
</tr>
<tr>
<td>Sickle Cell Disease</td>
<td>66-year life expectancy</td>
</tr>
<tr>
<td>Spina Bifida</td>
<td>> 80% reach adulthood</td>
</tr>
</tbody>
</table>

Challenges

- **Patient challenges:**
 - Graduate HS, move away, new job
 - New relationships, personal choices and challenges
 - Focus on independence
- **Family challenges:**
 - Close ties with pediatric caregivers
 - Privacy becomes an issue
 - Lack of confidence in patient’s ability to provide self-care and lack of confidence in the adult medical team
- **Pediatric care team challenges:**
 - Bond with patient and family
 - Limited contact with adult providers and services
 - Lack of trust in adult healthcare system/providers
 - Lack of training on how or when to start transition

- **Institutional and System Challenges**
 - Aging out of treatment
 - Insurance coverage and funding changes with age
 - Services funded by Medicaid decrease after 21
 - Change in eligibility requirements (SSI, Medicaid)
 - Discontinued from parent’s health insurance
 - Inhibiting personal health insurance challenges
 - Poor reimbursement for transition services
- **Adult care team challenges:**
 - Concern about not having training in congenital and childhood chronic illnesses to prepare them to manage them (medical competency)
 - Too little (or too much) family involvement
 - Psychosocial needs of the patient
 - Limited contact with pediatric services and providers

Peds to Adults

• What can we do?

 Begin discussions early!
 • Usually transition discussions should be held by the time the patient turn 12-13 years of age
 • Training on medication compliance and knowledge should start much earlier (as early as 3 years old depending on patient condition)

 By age 15 years, patient’s care team should initiate a jointly developed transition plan with involvement from both patient and caregivers

 By age 17 years, review and update the transition plan and prepare for adult care - begin implementation once the patient turns 18

 Transition plan should include clinic policies of both the pediatric and adult care facilities, registry procedures, personal/family/care team preparations and planning, and transfer of care logistics (insurance, location, etc)
 • “Get acquainted” visit with adult team one year before transfer

Peds to Adults

Table: Transition Readiness Assessment Questions 1.1

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Don’t Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you have a care plan?</td>
<td>Yes</td>
<td>No</td>
<td>Don’t Know</td>
</tr>
<tr>
<td>Do you have a care plan?</td>
<td>Yes</td>
<td>No</td>
<td>Don’t Know</td>
</tr>
<tr>
<td>Do you know what medications you are taking?</td>
<td>Yes</td>
<td>No</td>
<td>Don’t Know</td>
</tr>
<tr>
<td>Do you take your medications correctly?</td>
<td>Yes</td>
<td>No</td>
<td>Don’t Know</td>
</tr>
<tr>
<td>Do you use a medical device?</td>
<td>Yes</td>
<td>No</td>
<td>Don’t Know</td>
</tr>
</tbody>
</table>

Stringing Together Our Pediatric Pearls

Intro to Peds

- Peds to Adults
- PK/PD
- Infectious Diseases
- Med Safety and Toxicology
- Pain/Sedation
- PALS
- Seizures
Let’s Test Your Knowledge!

1. Hydrophilic drugs will have ______ distribution volumes and ______ plasma concentrations in neonates.
 a. Lower; lower
 b. Higher; lower
 c. Lower; higher
 d. Higher; higher

2. Updated perforated appendicitis guidelines in pediatrics recommend this dose of metronidazole (Flagyl):
 a. 10 mg/kg every 8 hours; max dose of 750 mg
 b. 30 mg/kg every 24 hours; max dose of 2000 mg
 c. 30 mg/kg every 24 hours; max dose of 1500 mg
 d. 15 mg/kg every 8 hours; max dose of 500 mg

3. Greater than _____ percent of children with chronic illnesses and special healthcare needs will survive past their 20th birthday.
 a. 60
 b. 70
 c. 80
 d. 90

References

- Huang NN, High RH. Correlative of serum levels following the administration of oral and parenteral preparations of penicillin to infants and children of various age groups. Journal of Pediatrics. 1953; 42:657-658